Tag : precision machining

quality control

Deburring and Metal Finishing: Choosing the Right Process for Your Manufacturing Needs

As a metalworker, there is no doubt that you appreciate the importance of deburring and finishing different parts before they are either completed or processed further. Over the years, significant strides have been made in terms of advances in technology, a factor that has made it possible to refine metal parts in such a way that they will meet the needs of the market. Regardless of the size of your machine shop or the type of pieces you deal in, technology can help you to produce metal parts for a wide range of applications. Denver manufacturing relies on machine deburring and metal finishing as some of the ways to address the flaws that metal parts may have.

The Difference Between Deburring and Fnishing

Before metal parts can be used for different applications, they must be refined to get rid of most of the flaws. This is the stage at which machine deburring and metal finishing are done. However, even as you think about precision manufacturing, it is important to bear in mind that these two processes are a bit different. This will make it easy for you to choose the more appropriate one.

Once a workpiece has been modified, there may be raised edges or pieces of material that are attached to its surface. These edges and pieces of materials are usually removed through deburring. With finishing, scaling and pitting on the surface of a workpiece are removed to prepare it for the next step or to enhance its quality and physical appearance.

Advantages of Machine Deburring

The fact that machine deburring is among the most popular ways of getting rid of flaws during various CNC manufacturing processes is a clear indication that the process has certain advantages.

Compared to hand deburring, automated deburring will greatly help to save both time and energy. In the long run, using machines will ensure that you maximize efficiency.

Since the grinding media will be attached to the machine, employees will not have to be in the work zone. This will minimize the risk of injuries caused by repetitive motion, effectively increasing safety in the workplace.

Without automation, it will be impossible for employees to achieve the perfect consistency. With automated deburring, the processed metal parts will have consistent quality despite changing operators when one finishes their shift.

Machine deburring is also associated with a wide range of new products that feature high quality finishes. This can go a long way in helping you stand apart from your competitors.

Disadvantages of Machine Deburring

For all the benefits linked to machine deburring, it is not without its downsides. Here are some of the disadvantages you should be aware of.

Most modern deburring machines feature advanced technology. It is partly because of this that buying a deburring machine makes for a huge investment. The high price tags on the machines are beyond the reach of a good number of people. This has stood in the way of the machines becoming widely available to many individuals and businesses.

Depending on the metal you wish to debur, you will have to constantly change out parts such as belts to achieve the desired results.

Machines cannot debur everything as required. This may require the use of a finisher to touch those parts that the machine could not work on.

Advantages of Metal Finishing

Metal finishing makes for another popular way of getting rid of rough surfaces and sharp edges. Some of the pros of metal finishing include:

By using machines that comprise both brush heads and abrasive belts, metal finishing will make it possible to achieve a wide variety of finishes. This means that you will have more decorative opportunities to explore.

Finishing specialists can prepare metal parts for secondary processes such as painting. The technique will play an important role in ensuring the next step is easier and delivers the great results that any original equipment manufacturer expects.

By working on the surface of the workpiece, metal finishing helps to improve the appearance of metal parts. The process also works to lengthen the lifespan of the pieces by enhancing their resistance to corrosion.

Metal finishing produces extremely smooth surfaces, a factor that not only ensures ease of cleaning but also eliminates the need to use harmful chemicals to keep such surfaces clean.

Disadvantages of Metal Finishing

Just like with machine deburring, metal finishing has a number of downsides. Before seeking the services of a skilled worker, here are some disadvantages you should know about.

Using a finisher to debur metal parts is bound to be a time consuming process. This is likely to undermine productivity.

To do high quality work that meets customer expectations, you will need a lot of high precision tools. You will not only have to invest in the wide range of tools but also learn how to use each one of them.

With a finisher, there is a chance that some parts will be deburred incorrectly. This will require that you spend more time on the parts to produce them in line with the specifications of your customers.

As a result of the disadvantages associated with using a finisher, this process can result in high production costs that may lower your profits.

Choosing a Deburring and Finishing Machine

When choosing the right machine for your needs, you must ensure that it will serve the intended purpose. In case your shop grinds similar materials consistently, you can choose to have dry machines. This means that shops that deal with different types of metals will benefit more from wet deburring and finishing machines. To get optimum performance from your machine, you should think about the type of abrasive as well as the specific characteristics and qualities of the workpiece you will be working on.

Consult the Experts

Choosing the most suitable deburring or finishing machine to handle your needs will not be a walk in the park. If you are not sure which machine will be appropriate, you can consult an expert in metal fabrication. Just like when looking for a CNC machinist, there are a few factors that you will have to keep in mind when selecting the expert to consult. These include whether they have the relevant industry experience if they have the right manufacturing partners, the kind of services they offer as well as relying on references from previous customers.

Since both machine deburring and metal finishing cost a significant amount of money, it is important to ensure that the process you choose will deliver the results you expect. Today, the opportunities available to you are limitless. In case you have unique needs, you can select a custom machine shop that offers quality and reliable services. At Tag Team Manufacturing, we specialize in machining CNC precision components for OEMs in different industries. Our skills and extensive experience make us the best machine shop Denver residents know.

Education concept: Helpful Tips with optical glass

Tips for Choosing a CNC Machining Partner

While the US machine manufacturing industry continues to grow rapidly, choosing the best strategic partner for your CNC machining can be quite challenging. However, this process should not be that difficult if you have the correct pieces of advice beforehand. Below are some machine shop tips that you might want to put into consideration when sizing up for the best service provider.

#1: The Technology in Use

The power of technology cannot be underestimated in the engineering and manufacturing sector. Therefore, it is an excellent idea to know the type of technology in use in your preferred machine shop. While there are many companies out there relying on standard technology, this could be a constraint when it comes to both design and machining. That is why it is paramount to work with a manufacturer who is fully automated and equipped with all the necessary precision tools and equipment. At Tag Team, we have heavily invested in Computer Numerical Control (CNC) manufacturing that allows us to deliver precise component machining to our customers. Additionally, this revolutionary approach to manufacturing helps us to achieve zero-defects because once your design is fed into the computer; our CNC machines can repeat the production process multiple times. This also helps to lower lead-time.

#2: The Expertise of the Staff

Sometimes you may go with a price that you think is good only to end up with a component that does not conform to your print or assembly. In other cases, your project may be delayed, and the excuse the manufacturer tells you is “your component design is too complex.” Therefore, you need to be vigilant when dealing with machine shops and only work with a company that has a reputation for interpreting designs and prints accurately and delivering projects on time. At Tag Team Manufacturing, we have created a work environment where our machinists make a long-term career. We know very well that expensive equipment and software are worthless if they are not coupled with qualified and experienced staff to deliver quality services and meet the exact customer specifications. In fact, the vast majority of our machinists are US manufacturing schools graduates and can handle all complexities relating to components design and implementation.

#3: Range of Materials and Services

Choosing a manufacturer who offers diverse metal machining services can save you a lot of time and paperwork. Consider a case scenario where you want a design component that has to incorporate several metals or materials. Definitely, it would be much more convenient to outsource to one manufacturer than several of them for a single project. That is why we at Tag Team Manufacturing have CNC machining for a variety of materials including plastic, stainless steel, aluminum, copper, brass, carbon steel, and most alloys. Besides, we have an extensive network of support vendors who provide brazing, plating, heat treatment, painting, and welding among other services.

#4: Relationship Sustainability

For those considering to enter into an Original Equipment Manufacturer (OEM) contract with a CNC machining firm, you might need to evaluate the sustainability of the relationship. First, put into perspective whether the manufacturer has the requisite CNC automation to meet your demand and needs. Second, the machine shop you want to enter into a contract with should protect your business interests and keep the requirements of the end-users in mind. That being said, Tag Team has an excellent reputation for producing components for EOM’s in almost all industries. Our production capacity is about 50, 000 components annually, which means we can meet your demand without compromising on quality. In addition, we protect the interest of our clients, as we do not publicize our relationships with EOM’s who buy components from us.

CNC Automation Trends

Machining Technology Trends 2018

2018 is already off to an exciting start when it comes to CNC manufacturing and CNC automation. The US economy is improving, jobs and growth are projecting higher for US manufacturing for the coming years, and new technologies are emerging in CNC automation. Here’s a look at some of the top machining technology trends for the coming year (and beyond).

1. Demand for Machine-Tooled Products Is Increasing
Consumer confidence is on the rise and the US economy is ramping up after a slowdown of many years. This means the demand for machine-tooled products will be on the rise as well. New changes to US tax laws and trade policies are increasing the demand for domestic manufacturing. This will also make it easier for new CNC manufacturing startups to get off the ground, because they can be more competitive with established overseas machining operations.

2. CNC Growth Projections Are High
CNC manufacturing is projected to grow in demand across nearly every sector this year. Take a look at the estimated 2018 growth in CNC industries from an analysis by Gardner Business International:

Medical Devices & Instruments: 5.1 percent increase
Surgical Instruments: 3.1 percent increase
Automotive Manufacturing: 2 percent increase
Aerospace Parts & Engines: 3 percent increase

3. Demand for CNC Manufacturing Jobs Projecting Upward
This is actually a “good news and bad news” trend for the moment, with the bad news coming first. The CNC manufacturing sector overall was not ready for the increased demand for precision machined products. In the short term, the skilled labor gap is going to get worse than it already is. Mechanical engineering schools don’t have a lot of new slots opening up, while the industry needs skilled and trained workers for CNC automation and machining. Bottom line: There aren’t enough workers to keep up with demand in the short term. However, that is good news in the long run. The job outlook for the CNC Manufacturing sector looks better and better through 2018 and beyond.

4. More Touchscreen Controls
Companies that make precision CNC machining equipment are rapidly implementing more touchscreen controls. The controls make it easier and faster to pre-program machinery and tools for 3D cutting tasks. Program navigation, editing, creation and verification are all made easier by implement touchscreen controls with manual keypads. CAD/CAM programming and USB communication with interfaces allow even more options, versatility and ease-of-use on the machining shop floor. The implementation of touchscreen controls has added more speed to the CNC machining process, which is great when manufacturers want to quickly push more product out the door.

5. Robotics & Regulations
As the CNC manufacturing sector continues to expand, human engineers are increasingly working in proximity to robots. State and federal government will eventually step in with new regulations related to functional safety. While it hasn’t happened yet (beyond regulations that are already in place under OSHA), the industry is holding its breath for when that day comes. When it does happen, it will likely have a ripple across the domestic CNC manufacturing industry which will increase product costs for consumers.

Precision Machine Shop

Things to Look for When Hiring a Precision Machine Shop

People should look for several items when they are choosing a precision machine shop to make certain that they make the right choice.

Communication Skills
The person in the shop that you are telling about your job or project should have great communication skills. They should be skilled at their job and know what the others in the shop can accomplish. If this person is experienced, they will also have questions for you to help you to describe your job in as much detail as possible. Great communication is the first skill to look for, because if you and the shop manager are not on the same page, your project may not come out as you saw it.

Innovative Technology
A good precision machine shop is only as good as the available technology they use and it is based on the technician’s knowledge to use it. Research what types of equipment are needed to manufacture a prototype of your project. Then ask what types of equipment the machine shop uses such as CNC Machining, Manual Machining and Wire EDM. Also, ask if the process uses more than one type of machining for the run. The machine shop should also be able to have certified technicians to run the software available for the process so they can implement any changes in the design that you may ask for. Shops with the latest technology are forward thinking and will learn and implement new processes to keep up with the rising technology needed.

References and Samples of Work
A great machine shop will have a project book with photos of some of their past work along with the customer’s names and phone number and won’t be afraid to share these things with you. If they don’t give you references or explain past processes, they may be hiding something about their performance from you. The project book should have their most difficult jobs that they completed in it to show how capable the machine shop is in their business.

Flexibility
Machine shops that are proficient in their work will have some sort of process to allow flexibility in the project while it is underway. They should report to you at certain steps of the process to make certain they are on track and be able to change things if it isn’t to your specifications. This helps to get the first prototype correct and sets in place the specifics for a full production run of your products. If they don’t have a schedule set up, you may want to look elsewhere for a precision machine shop that is more compliant.

Quality Control
All machine shops should have a quality control inspector, whether in-house or out of house to ensure that your project meets all of the specifications that it should. They should be willing to talk about their quality certifications such as ISO 9001 and AS9100 standards and share with you what types of equipment they use to ensure the standards are met.

Looking for these items will help you to find a quality precision machine shop that you can use for prototypes, parts and projects of any size to successfully fulfill your wishes and demands.

high-speed machining

High-Speed Machining: What Is It and How Does it Help?

According to the US mechanical engineering schools, high-speed machining can be defined in two different ways. However, the most commonly used definition is based on the relative surface speed between the workplace and the CNC manufacturing tool. This definition is primarily a thermo limit since most of the CNC mechanisms depend on temperature. According to surface speed definition, high-speed CNC machining is favored by metal cutting researchers and toolmakers from US manufacturing department.

Researchers and tool makers define high-speed machining by indicating the range of a transitional region which is yellow, conventional machining region which is green and high-speed region which is red and depend on surface speed. The surface speed is in meters per minute, and its equivalent to v=πdn where n is spindle speed and d is the diameter of the milling work piece.

The second definition which is widely used by mechanical engineering schools is the DN number that is centered on the rotation capability of the loaded spindle bearings. D is the diameter in mm of the larger bearing bore, and N is the spindle speed in rpm.

High-Speed Machining Principles

High-speed machining operates on several principles. Keep in mind that not every type of machining will benefit from HSM, but most applications could from HMS with implementation of CNC automation and assumptions. Below are high-speed machine principles.

CNC machine
Tool holders
Cutting tools
CAD system
CAM system

How Does High-Speed Machining Help?

Every machining shop desires high productivity and improved machining process. Machinists make complicated metal parts, shapes and need to run complicated programs to help them provide good services to their clients. Machinists use high-speed machining to make their work faster and easier. Here are some benefits of using high-speed machining.

Reduced Energy or Heat Loss

High-speed machining helps in increasing the rate and speed of material cutting which reduces excessive heat loss and transfer. When you reduce heat transfer, turnaround time and transmission are kept low which lowers energy consumption. Traditionally, time was provided for metals to cool down and form a hardened metal but in this case, the coolant is used in metal cooling which reduces heat loss and increases the speed of production since less time is spent on cooling.

Increased Productivity Rate

High-speed machining has driven manufacturers and machining shops to higher rates of productivity. Faster productivity rates mean the machines can produce more parts in a short period. However, the functionality of high-speed machining is often affected by the ability of the cutting materials themselves. Manufacturing in USA prefer the use of faster cutters since their productivity is high.

Even if all cutters are faster, the results produced by cutters of different materials are unique. For instance, diamond, ceramics, HSS, tungsten carbide and cermets cutters all provide different outputs. High-speed cutting tools can take a lot of time and may even lead to stress. The main problem that is associated with high-speed cutting tools is that they don’t manage heat effectively and require a coolant.

ISO 9001

What is ISO and What are the Steps to Becoming ISO Certified?

ISO 9001 originated from the conglomeration of two different organizations namely United Nations Standard Coordinating Committee (UNSCC) and International Federation of the National Standardizing Associations (IFNSA) in 1946 when over 25 nations convened at the Institute of Civil Engineers in central London.

ISO (International Organization for Standardization) creates all the essential documents that provide specific guidelines, requirements, specifications, or characteristics that are used to ensure that materials, processes, products, and services are highly fit for their purpose. The body has published over 22025 International standards which can be purchased from the ISO store. The standards cover all sectors including manufacturing in USA, mechanical engineering schools, and even CNC automation.

The ISO 9001 standards bring real and more measurable benefits in various sectors since the standards underpin the technology most industries rely on and ensures quality is adhered to in every stage of CNC machining and CNC manufacturing. Some of the benefits of being ISO 9001 certified include improved efficiency and cost savings, widened market potential, higher level of client service which leads to higher customer satisfaction, and compliance with procurement tenders.

What Are the Steps to Becoming ISO 9001 Certified?

Obtaining an ISO certification for US manufacturing schools or any other industry player requires a significant investment of time, effort, and money. This is a process that will take some time to complete. Below are the essential steps to be followed while seeking ISO certification.

Select a Credible Certification Body

The journey towards being ISO certified starts with identifying a qualified certification body to help you in the process. Since most of the ISO 9001 standards for mechanical engineering are based on a three-year cycle, most of the certification parties will expect the company to sign up a minimum three-year agreement to be considered. Some of the certification bodies will insist on visiting your company several times a year to assess the progress, but a single visit is usually enough to establish the milestones achieved towards the certification.

Develop a Management System

Developing a Management System is an essential part of achieving ISO certification standards. There is the Quality Management System for ISO 9001 standard and the Environmental Management System for the ISO 14001 standard. The core components of the quality management system include analysis and improvement, provision of resources, processes of management activities, and product realization. Once you’ve developed your management system, you’ll be required to fully implement the system, verify if it’s effective, and register it.

Stage 1 Audit

Once you have the quality management system in place, a thorough audit of company activities is what follows. An auditor evaluates your existing systems and provides a well-analysed report identifying suitable actions that need to be undertaken to meet the specific standard. Stage 1 audit is mainly used as a roadmap to the next phase of auditing, so there is no need to worry if you feel like the company is underprepared.

Stage 2 Audit

Stage 2 audit involves fixing all the problems that were identified in stage 1 audit. Once you’ve implemented in the recommendations put forward in the report of stage one audit, an auditor will come in again to complete stage two audit. The purpose of stage two audit is to determine the effectiveness and efficiency of your management system and to establish whether it meets all the requirement of the ISO 9001 standards that you want. If the system is good and it meets all the requirements, then the company will be recommended for ISO certification.

manufacturing marketing

5 Valuable Online Resources for Marketing Your Manufacturing Business

In a short period, the marketing landscape has changed dramatically. The internet, social media, and inbound marketing capabilities have assured that manufacturing competition is now global. Staying ahead of trends and having a substantial online presence bolstered by quality content is now mandatory. The reality is that your manufacturing marketing, and or, salespeople probably need some guidance to compete at this relatively new game. Here we will highlight five quality online resources that provide insights and instruction for marketers in the manufacturing sector.

Hubspot
Personalized advice & resources for your inbound business Hubspot is a fantastic resource if you or your marketing department are new to, or struggling with inbound marketing efforts. They offer different levels of service, tailored to your specific needs and allow you to upgrade the services as your marketing efforts grow. To start, Hubspot provides a vast array of services that you or your team can use to learn more about, and engage the inbound marketing approach. The free tools and courses alone, available for both sales and marketing teams, will get your manufacturing business up to date with the current trends of effective online and content marketing.

Content Marketing Institute

Leading global content marketing education and training organization Content Marketing Institute was founded by author and content marketing guru Joe Pulizzi, as part of an on-going effort to educate the masses about the present and future of marketing. CMI has an impressive list of companies with which they have worked. In addition to direct consulting services, CMI offers workshops, podcasts, events, a digital magazine, blog posts and an online University to provide you with the resources that you will need to expand your inbound manufacturing marketing strategy.

Thomas Marketing
With Thomas Marketing you will find a group that focused marketing strategy that is specific to manufacturing and industrial industry. According to their website, as many as 57% of business purchasing decisions are made before the first personal contact. These decisions are made solely on the content that you provide. At Thomas, they understand the importance of a robust inbound marketing strategy and where it fits into your industry. The Thomas Network allows you to list your business, with a limited amount of information for free, and Thomas Insights offers white pages, case studies, and articles so that you can stay up to date and get inspired.

Advantage Business Media
Having developed from a company focused on publishing to offering full-service marketing solutions, Advantage Business Media as an advantage over others concerning content creation. They create high-quality content in-house, and regularly collect and utilize data to ensure that they are targeting your ideal audience, and justifying ROI. The Blog and Playbooks, on their website, offer valuable free information and insights into inbound strategy and marketing efforts.

Marketing Profs
A massive platform offering information for manufacturing marketing individuals and teams, Marketing Profs is a go-to source for informative articles, podcasts, courses and interactive workshops.There is an abundance of helpful info available with their free membership. However, for a small membership fee, three members of your marketing team can access significantly more tips, tools, and discounted courses. Although not a manufacturing industry specific site it will be an excellent match for a manufacturing company with an established marketing team in place that could use help with the newest B2B marketing trends.

cad cam

Recent Improvements of CAD CAM Software in Manufacturing

The capabilities of CAD CAM software has greatly improved over the recent years, thanks to faster multicore and embedded processors backed by cloud-based innovations. Manufacturing firms are hard-pressed to keep up with the competitive advances in CNC machining, with each day introducing a new tool path creation, new software for simulation, multi-task machining, and CNC automation tools.

In terms of quality assurance, CAD CAM is fast moving into the footprint of surface finish measurements and part inspection. Parts design has also seen an integration of FEA capabilities for testing and predicting how different materials machined on prototypes will actually perform. Here are some of the recent improvements of CAD/CAM software in manufacturing:

Five-axis Machining

Five-axis machining has seen new capabilities with the introduction of new CAD CAM software solutions. They come with a broad range of 5-axis strategies that enhance roughing and finishing, improved point distribution, faster calculation periods, and simpler data management capabilities. The new roughing strategy now incorporates CNC machining (through a curve or line orientation) and programming based on a reference surface. The developers have put in massive smoothing algorithms to enhance more even point distribution as well as subtle vectors moving. Manufacturers can also avoid costly and time-consuming reworks on parts by utilizing the higher quality surface finishes.

Advanced Milling and Mill-turn Machines

Many US manufacturing firms have introduced a new functionality to enhance simultaneous 4 and 5-axis milling using the latest mill-turn machines. The technology has improved drilling methodologies to automatically find and machine holes on conical and cylindrical faces.

The advanced mill/turn machines have brought enormous improvements in productivity for many manufacturing firms in the USA. New software allows businesses to optimize their investment by availing the full range of 4 and 5-axis cycles in the CNC manufacturing process. Currently, more mold and die users are beginning to utilize 5-axis machining as the costs of such machines continuously drop.

Multi-axis CNC Software

The new multi-axis functionality and tool paths for hard milling and HSM have greatly improved CNC machining. The updated machining software brings a new dimension to the improved multi-axis tool hence providing customized and streamlined interface that can be fine-tuned to different applications like turbine blades and impellers. The same technology has now been introduced in many US manufacturing schools and mechanical engineering institutions to further advance the skill.

Advanced 3-D simulation Capabilities

US manufacturing companies have demonstrated various full-machine simulation modules that aim to provide photorealistic 3D models of cnc machine tools in operation. Based on 3-D solid models, the simulations can help manufacturers pinpoint potential collisions and errors in complex turn-mills with multitasking capabilities or Swiss-type turn-mills.

The new simulation modules offer improved collision detection and error-checking functionalities hence allowing manufacturers to perform more robust simulations than what is currently offered by CAM suppliers. Now, the simulated machine models can incorporate machine specific tool holders to ensure early detection of collisions on the user’s PC.

Summary

With global competitive pressures facing the manufacturing industry, mechanical engineering institutions, US manufacturing firms, and mechanical engineering schools are working overtime to produce the highest-quality finished parts by forming partnerships with machine tool programmers to develop workpieces that need little to no rework. Five-axis machining, advanced 3-D simulation, and cnc automation are some of the technology advances opening up new capabilities in manufacturing in USA.

Medical Device Manufacturers

4 Latest Innovations in Medical Device Manufacturing

Saving lives requires a high degree of precision. No field requires CNC machining more than the medical device manufacturers. The application of CNC precision ranges from necessary MRI scans to cardiac catheterization. Currently, there are numerous ongoing researches, and some results have been produced.

Medical device manufacturing is on the brink of unleashing breathtaking technologies if it hasn’t yet. Here are four states of the art medical devices that revolutionize the industry thanks to CNC precision:

3D Tissue Printing
A few years ago if one mentioned the possibility of developing 3D bio-printing of tissues, it was seen as pigs flying. The tech is here with us. The entire process relies on the liquefaction of donor cells or a patient to provide the required nutrients and oxygen. With high precision, the cells are put on a scaffold in small layers that are characteristic to that of the patient. Incubation follows until viable tissues are obtained.

3D printing opens room for surgeons to carry out tissue and organ repairs by relying on the patients’ mature cells or a perfect donor. Gone are days that they depended on foreign tissues.

Smart Scalpel and Probe

With medical device manufacturers, CNC precision equipment such as smart probes with smart scalpels gives hope to patients who have cancer. Due to their high precision and small size, they can be made tissue selective a crucial necessity in targeting cancerous cells especially in nerves or vascular tissues.

Once the smart probes are inserted into the body tissue, they can be directed and guided to the tumor location. At the tip of the probe are sensors capable of distinguishing between healthy tissues and cancerous ones. They have been tested and found to detect up to 7 signs of breast cancer.

The high-end technology sends tissue information in real time, giving surgeons and radiotherapists’ accurate data.

Electromagnetic Acoustic Imaging

It has been a journey for medical technicians looking for better and safer ultrasound devices that the commonly used CT scanners. Electromagnetic acoustic imaging is a top-notch technology that employs bio-electromagnetism and acoustics.

The combination produces quality MRI images and is safe. Moreover, physicians can comfortably differentiate malignant tissues from healthy ones.

The science behind the high sensitivity is that different tissues react differently to stimuli. Physicians use light, electromagnetic and ultrasound energy to stimulate tissues. Healthy tissue will not respond the same way to the infected one. The differences can then be projected on an ultrasound detector for interpretation.

Cancer tissues have high conductivity as compared to normal tissues. Electromagnetic radiation penetrates deeply into the body tissues making it ideal for acoustic imaging. Due to its high penetration, it can detect tumors located deep inside body organs or bones.

EMAI has the following benefits:

-Safe
-Portable equipment
-Effective
-Fast
-Less expensive

Nanobots
Apart from being the 5th killer, stroke causes disability in the long term. Living with the condition is heartbreaking and costly to both the infected and the affected. It is caused by the blockage of blood vessels delivering oxygen and blood to the brain. Consequently, the brain cells die.

Nanobots are now being used in the treatment of stroke by unblocking blood clots. The removal of clots also creates passageways for drug delivery with the aim of reversing stroke effects.

Tag Team Manufacturing is a leading manufacturer located in Colorado specializing in CNC precision for various industries including medical device manufacturers. Contact them for all your CNC Machining solutions.

Precision Machining

Precision Machining for Medical and Aerospace Industries

Most industries are concerned about quality machining for manufacturing industries. In the same way, precision machining for medical and aerospace industries is very important. And did you know that aerospace and medical machined parts should meet certain criteria of quality and tolerance for them to perform efficiently?

Tag Team manufacturing company has been in the manufacturing business for a considerable amount of time. We started this company in the year 1987, and since then, we have continued to grow and develop our experiences as well as processes. For that reason, we can produce even the most challenging and intricate medical and aerospace industry machining parts.

Why work with Tag Team Manufacturing?

We have a team of specialized industry experts who are passionate and dedicated to their job as the core of our company have been with us 10+ years. When you reach out to us, one of our well trained and specialized staff members will attend to all your machining needs from blue print to completion.

Tag Team Manufacturing has access to a wide range of secondary vendor services as well as quality machining capabilities, and that gives an upper hand when it comes to producing demand products. Therefore, if you are looking for a company that can cater to all your needs, Tag Team is the place to be.

To make sure we deliver blue print specific designs, our team will review the design and discuss any questions before we begin your project. From there, our developed CNC automation and CNC precision machining will ensure that we deliver aerospace and medical machining that meet your expectations. You can rest assured that we will use all the available modern technology to craft what you need made.

Lastly, we have a quality department that ensures all products and services meet the required statutory, customer and regulatory standards. With this department in place, you can relax knowing that any product you get from us is of good quality. We always ensure that all the processes and procedures are followed to the later. In that way, we ensure that all the products have the right measurement and match your blue print exactly. Nothing leaves our facility without inspection.

CNC Machining services for medical Industries

The medical industry is very precise on what kind of machines they need regarding quality and design. Even the smallest machine parts are essential to the success of various lifesaving progresses in health care. Before we give you the end product, we always make sure that it meets your expectations and blue print 100% as the medical machines are very sensitive and are used for very crucial things.

CNC Machining services for aerospace industries

Tag Team Manufacturing has had extensive experience in CNC Machining of components for the aerospace industries for over 30 years now. We can produce even the smallest instrumental parts needed to kick off any project. We work with most of your alloys among other materials needed by the aerospace industry, including aluminum, stainless steel, carbon steel, brass and copper.

And just like in the medical industry, we always make sure every part made for aerospace meets your expectation and the specifications 100%. So, if you are looking for high precision machining in the aerospace industry, Tag team is the place to go.

Contact Us

If you are in need of quality and high tolerance precision machining for medical and aerospace industries, do not hesitate to contact us. We offer you quality products and services and at a competitive price and on time. Therefore, do not miss out on this opportunity, give us a call today at 303-841-5697.