Monthly Archives : September 2019

precision machine shop

How to Choose the Right Tools for the Job: Examples of CNC Machine Tasks

Just because the world of manufacturing has changed doesn’t mean that people need to stray from the basics. It is just as important to choose the right tools for the job today as it was hundreds of years ago. In actuality, as technology has advanced, there are more tools at someone’s disposal than ever before. With more choices, it has become harder to select the right tools. Now, there are CNC manufacturing tools available in almost every precision machine shop, leaving people to select which types of tools are most applicable to this advanced technology. What are some of the examples of tools that a CNC machinist might require? How can the right tools be identified?

Starting with Computer-Animated Drawing (CAD) Model Design

The first step in the CNC machining process is the creation of a 2D or 3D model of what is going to be produced. Typically, this is done through computer-animated drawing, or CAD. This is computer programming that plays an essential role in the CNC process. CAD allows manufacturers to put together a picture with the necessary specifications (including dimensions and various geometries) that will allow the product to be completed.

The designs of CNC machined parts are typically restricted by the geometry of the machine process itself. CAD helps manufacturers identify potential problems and limitations of the end product before the process gets underway. In this fashion, CAD saves both time and money in any precision machine shop. By identifying and fixing problems before the first machine is moved, a tremendous amount of stress is saved.

Once the CAD drawing is complete, the file needs to be exported and converted into a format that is compatible with CNC machining. Common formats include STEP and IGES. It is important for manufacturers to take a look at the various software programs that are available for CAD. The more familiar people are with CAD, the more efficient the CNC machining process will be.

Building the CNC Machine: Examples of Possible Tasks

Now that the CAD drawing is complete, the next step is to build the CNC machine. Depending on the actions that must be done to build the final product, this machine can take many forms. Some of the tools that the manufacturer will need to find include machinery spindles, machine vises, drill bits, end mills, lathes and more. These tools then need to be attached correctly for the various steps to be performed. It is important for everyone to identify the various steps that must be completed and build their machine accordingly. Some of the types of CNC operations that might be performed using custom machined parts include:

CNC Drilling: Drilling is a machine process that relies on the use of drill bits with multiple points that will produce holes in the desires workpiece. Using CNC drilling, the machine will feed the rotating drill bit into the perpendicular plane of the workpiece. This produces holes that are aligned in a vertical manner with diameters that match the width of the drill bit. Using advanced CNC machinery, holes can also be drilled at an angular manner. Drill bits can also be used to perform tasks such as reaming, countersinking, and counterboring. If these tasks are required, advanced drill bits might be needed. Manufacturers in a precision machine shop should plan accordingly.

CNC Milling: Another possible CNC task is called milling. In milling, a rotating multipoint cutting tool is used to remove certain amounts of material from the workpiece. The CNC machine will typically feed the workpiece into the cutting tool in the same direction as the tool’s rotation. This produces a smooth surface while simultaneously removing material from the surface of the workpiece. Depending on the program, CNC milling can either be used to cut shallow, flat surfaces with flat-bottomed cavities (called face milling) or to produce deep cavities such as slots and threads (called peripheral milling). Depending on the type of milling that people need to perform, they might prefer one type of equipment over the other.

CNC Turning: CNC turning is another possible task that can be performed by advanced CNC machinery. In CNC turning, the machine (such as a lathe) will feed the cutting tool into the workpiece in a linear fashion. Then, using a single point, the machine will remove material from the circumference of the workpiece. This will be continued until the desired diameter is achieved. Therefore, CNC turning can be used to create cylindrical parts. Advanced CNC turning can also be used to apply advanced internal features to the workpiece. This includes threads, tapers, and slots. If advanced features are needed, the manufacturer may want to investigate advanced CNC turning tools that are capable of doing this.

As a summary, CNC drilling is used to produce cylindrical holes of varying sizes. CNC milling removes material from the workpiece and produces a wider variety of shapes. CNC turning is used to create round or cylindrical parts. All of these require different manufacturing tools that interact with CNC machines in a different way.

A Revolution in US Manufacturing with Prototype Machining from CNC Manufacturing

While these are a few of the most common tasks that can be carried out using CNC tools, there are numerous other examples as well. These include lapping, honing, grinding, broaching, and sawing. These are advanced tasks that can be combined with those above to create additional features in the final product. With the advent of advanced CNC programming, machines in any precision machine shop can be set up to perform multiple tasks at the same time using custom machined parts. This has changed what people expect of their original equipment manufacturer (OEM) because this technology can increase both productivity and accuracy. It is crucial for manufacturers to embrace CNC manufacturing and invest in the proper equipment to ensure these expectations are met.

Choosing the Right Tools: Help from the Experienced Professionals

As the world of Denver manufacturing continues to change, it will only become more important to choose the right tools. The expectations of the consumer are going to change and precision machine shop businesses need to rise to meet them. This means putting CNC manufacturing to work in the right way with the right equipment and the right team. Because of this, anyone who is working in a custom machine shop Denver needs to make sure that they have access to every tool. This is where it is crucial to have a high-quality CNC Machinist available. To learn more about CNC manufacturing and how it can change your Denver manufacturing company, contact Tag Team Manufacturing today. Someone is always available to provide assistance.

custom machined parts

The Evolution of Manufacturing

It’s no secret that technological advances have changed every sector of the economy and this is just as true in the world of manufacturing as it is in any other industry. Those who have experience working in the manufacturing field know how the field has changed over the past few decades. Manufacturing has come a long way from the first assembly line and, now, people might think that custom machined parts, advanced machinery and robots are changing the field permanently. In order for a business to rise to meet these changes, they also need to understand the course of manufacturing evolution over the past few decades. How has manufacturing evolved from its roots to the present?

The Early Days of the Manufacturing Industry

Custom machined parts haven’t always been around as manufacturing has changed significantly over the past several decades. Many people look at the advent of the Industrial Revolution as the starting place of manufacturing. This was the first time that interlocking parts were used to create high-output facilities that could produce identical parts quickly. Despite the use of machines to produce parts, the human hand still played a critical role.

Unfortunately, one of the major problems with manufacturing during this era was safety. People were intimately connected to large machines with dangerous moving parts. One mistake could place someone in the hospital, rendering them unable to work or provide for their family. Furthermore, there were health concerns associated with many of these facilities. Because many of these factories were coal-powered and workers were kept in close quarters, illness was common. If someone got sick, that illness could spread through the entire building in a short period of time.

Finally, a huge safety issue was fires. There are numerous stories of the early days of manufacturing of large conflagrations that rapidly engulfed entire buildings. One example is the Triangle Shirtwaist factory fire that took place in New York City in the early 1900s. It is still regarded as the deadliest manufacturing disaster in the history of the United States, as it resulted in the deaths of nearly 150 people. Fortunately, technology improved and changes were made that placed worker safety at the top of the priority list.

The Assembly Line Changes Manufacturing

As technology progressed, thinking changed. The leaders of the world of manufacturing looked for ways to increase output to meet the rising demands of consumers. With this, the assembly line was developed. Many people credit the first use of the assembly line to Henry Ford, which he used to build the first affordable automobile, the Model T. In the assembly line, workers are trained to perform the same task over and over again. Because they are performing the same task, they become experts at this task, allowing them to perform this task faster than anybody else. By combining many people who are experts at their singular task, production and output increase. The assembly line completely changed how manufacturing was performed.

Computers Change the Manufacturing Industry

As the 20th century rolled on, computers started to play a role in the manufacturing industry and changed the fundamentals. With the advent of computers, workers became able to give the computer commands, allowing more precise tasks to be performed. The early days of computer manufacturing involved punch cards that were used to deliver commands. Then, the computer would spit out answers or perform tasks based on those punch cards. Computers and machines are able to perform tasks more quickly and more accurately than human hands. By removing humans from the front lines, factories became safer and humans were largely able to work behind operational controls.

Automation as the Next Step

Technology continued to progress and no area was left untouched. This includes manufacturing and its custom machined parts. As computers became both smarter and smaller, automation developed. Automation is the ability of machines to perform the same task over and over again without requiring additional input from the human hand. Automation became common in the average precision machine shop, leading to significantly increased production capabilities. Machines that are automated do not get tired and, thus, led to the development of 24-hour per day production. Furthermore, these automation robots are also more accurate than the human hand. The manufacturing industry exploded as production and accuracy both increased. Instead of humans turning the screws and tightening the bolts, robots were able to do this. Now, the people became responsible for delivering commands to the machines, changing their jobs when necessary.

Manufacturing in the Contemporary World

Over the past few years, there have been several additional major changes in the world of manufacturing. Some of the examples include:

Workers are More Highly Skilled: Because the manufacturing industry is producing more complex items than ever before, the workers must also be more highly skilled. Those who work in the manufacturing industry often have advanced training in areas such as computer science and robotics.

Higher-Value Goods are Produced: Due to the advent of technology, the manufacturing industry is also producing more high-value goods than ever before. This includes advanced vehicles, accessories for computers, and other connected devices.

The Job of the Human Hand Has Changed: The days of workers getting their hands dirty in a steel mill or coal mine are now relegated to the pages of history. Today’s manufacturing employees are working on a squeaky clean factory floor delivering commands to precision computers that perform a majority of the step-by-step tasks. This is both faster and safer than the early days of manufacturing.

Manufacturing in the Global World: Finally, the world of manufacturing is now a global place. Many of the goods produced in factories today are exported to other countries. The original equipment manufacturer (OEM) is distributing products around the world. The growth of logistics has allowed this to happen. The world is more connected than ever before and Denver Manufacturing is at the heart of these custom machined parts.

Without a doubt, manufacturing is going to continue to evolve as technology continues to progress. CNC manufacturing and custom machined parts have already changed the way manufacturing functions. With computers able to perform multiple complicated tasks at the same time, consumer expectations have changed. It is important for manufacturers to stay ahead of the curve and meet these expectations.

Relying on High-Quality CNC Manufacturing

Precision manufacturing, such as CNC Machining, has completely changed the way that products are produced. It is important for manufacturers to rise to meet these changes so that they can remain competitive in the modern world. Having a high-quality CNC Machinist in a custom machine shop in Denver can help a company maintain an edge on their competitors. CNC machinery can help a business quickly produce high-quality results that will inspire loyalty among customers. To learn more about custom CNC precision machining in the Denver area, contact Tag Team Manufacturing today.