Tag : denver manufacturing

CNC machinist

How long does it take to become a CNC Machinist?

Anyone who uses machine tools to modify or make parts as a profession is a machinist. However, a person who has been properly trained to become a CNC machinist can do much more. A qualified machinist should be able to use CNC (Computer Numerical Control) to execute his/her duties. CNC refers to the process of using computers to control machines. It’s the automation of machine tools via machine control commands to execute pre-programmed sequences.

What Does a Machinist Do?

The terms CNC manufacturing, CNC automation, and CNC machining all allude to the use of Computer Numerical Control (CNC) via programming to increase quality and consistency of the product. A CNC machinist can operate a wide range of machinery in the creation of parts and products that are usually very specific. Machinists operate specialized tools to create precision metal parts. They repair, modify, and fabricate mechanical equipment.

A normal day in the life of a machinist includes:

– The use of manual and computer controlled machinery i.e. operate, set up, and program the CNC Machinery

– Making sure that the machinery is properly maintained.

– Operating tools such as grinders, milling machines, etc.

– Calculating where to bore or cut using the right tools for each job.

To become a CNC machinist, it’s good to complete a training program in one of the US manufacturing schools, or better still, one of the most reputable mechanical engineering schools in the land. Keep in mind that formal training is not a must – there a lot of self-taught machinists out there, but it’s strongly suggested that you acquire some form of formal training to effectively and safely discharge your duties. Courses like mechanical engineering include a pretty comprehensive machining training program. Many businesses with interests in manufacturing in the US do hire machinists.

Types of Machinists

Primarily, there are three types of CNC machinists. They are operating machinists, set up machinists, and programming machinists. An operation machinist is responsible for the day to day functioning of the machines – they are the operators. Set up machinists are tasked with the job of making sure that everything is in working order. They are in charge of monitoring the equipment, adjusting offsets, and performing other tasks needed to maintain smooth operations. Some machinists specialize in writing CNC programs and modify existing programs in response to glitches encountered during test runs. These machinists are known as programming machinists.

Becoming a Machinist

As stated earlier in the article, to become a professional CNC machinist, it’s prudent to acquire proper training and certification. If it’s possible, its best to start preparations to become a machinist early. In their training, machinists get several years of technical instruction and on-site training. Training can be acquired via community or technical colleges, vocational schools, and apprenticeship programs. Often, you will be required to have a high school diploma.

Typically, becoming a machinist takes between 1 to 2 years for entry level roles including a minimum of 8 weeks of technical training and over 1,500 hours of on the job training each year. Here’s what you need to do to become a machinist in the United States:

– Enrol for preparatory classes. A high school diploma is the minimum requirement to becoming a machinist. You can get the necessary training — in this case, a degree, usually taking up to two years — from a technical college

– Complete a formal apprenticeship. You can work with a local manufacturer, local union, or your school to look for available opportunities. An apprenticeship is an entry level position where you can stay for a year or two — depending on your training and tenacity — before moving up to an operator position.

– Get NIMS certification. A National Institute for Metalworking Skills (NIMS) certification isn’t a requirement, but its recommended for aspiring machinists. After completing your apprenticeship, get one of those. You will be required to sit for a performance-based written and practical exam to get certification.

The last and final step to becoming a machinist is putting your skills to work. You can do that by getting a job at a manufacturer specializing in making parts for OEMs (Original Equipment Manufacturers). Alternatively, you can choose to work for yourself if you have the business skills. Depending on your financial ability, you can either buy an existing Machine Shop or purchase a machine to handle some small jobs from your home or garage.

manufacturing sector

Where is the highest concentration of manufacturing in the world?

Today, the highest concentration of manufacturing in the world is still in China. Having displaced the United States from the number one spot of world’s largest manufacturing nation back in 2010, China has continued to solidify its dominance as the world leader. As of 2013, according to data published by the United Nations, China accounted for 23.2% of the total world manufacturing sector while U.S. came in second with an 18.1% share. Japan, Germany and Korea rounded up the list of top 5 with 7.8%, 6.3% and 3.1% respectively.

China continues to be one of the most rapidly growing countries in the world. And when it comes to manufacturing, the country is definitely reigning as the supreme world supplier of electronics, automobile spare parts, commercial goods, steel products, communication equipment, and more. It currently has the largest concentration of manufacturing industries in the world, and according to statistics, 6 out of the major 10 export ports in the world are in China.

Here is a breakdown of China’s manufacturing empire, spread out in 5 major metroplexes;

1. Shanghai

Shanghai is not only one of the major financial, economic, trade, manufacturing and shipping cities in China, but also the world. It has rapidly been developing industries over the past 25+ years, which has massively attributed to its overall success. It is responsible for the manufacturing of automobiles, steel products, electronics, communication equipment and devices, petrochemicals and biomedicine.

Shanghai is also connected to the nearby cities of Ningbo and Hangzou by the Hangzou Bay Bridge and an overland high-speed rail. These two brother cities also indulge in heavy manufacturing of commercial and consumer goods daily.

2. Beijing

Beijing, the capital and most populous city in China after Shanghai, is another major hub for manufacturing companies in China. It is home to 52 of the Fortune 500 companies and its industrial sector is mainly dominated by heavy industries which contribute to over 80% of its gross industrial output.

The city’s manufacturing sector is mainly involved with electronics, pharmaceuticals, telecommunication equipment, chemicals, and food & beverages. It is also one of the leaders in information technology and bio-engineering.

3. Tianjin

A sister city to Beijing, Tianjin is another giant manufacturing sector on its own.  It is one of the 4 autonomous municipalities in China; the others being Shanghai, Beijing and Chongqing, that offer immense opportunities and resources to manufacturers hence attracting them here. It is a leader in the manufacture of mobile phones, automobiles, alternative energy products, and aerospace & aviation products.

4. Guangzhou

This another prominent city in China with thousands of factories spread out all over its manufacturing zones. The factories are so diverse in their production that you can get anything from toothpicks to automobile parts here. The city is also popular with traders of African descent, most of who came here in search of low-cost goods but ended up settling down and exporting these goods back home.

5. Shenzhen

Shenzhen is a world-renown electronics manufacturing city. It is the electronics manufacturing hub of China and the world at large. Home to over 12 million people, this city is just the perfect place for you to establish an electronics manufacturing business in China.

And there you have it, the country with the highest concentration of manufacturing in the world together with its major manufacturing metroplexes and their corresponding areas of specialization.

manufacturing jobs

What geographical areas in the US have the biggest increase in manufacturing?

In the US, the auto industry is currently experiencing a resurgence with the introduction of CNC manufacturing and under the backing of rising consumer confidence, low-interest rates, and the need to replace older cars.
As CNC automation leads the way in spurring industrialization in the U.S., several regions are seen as major players in manufacturing, in this huge economy.

Michigan

During the recession, this area lost most of its manufacturing jobs, but it has since been able to recover 40% of these. It is currently leading in the generation of new manufacturing jobs. America has 70 metropolitan areas for manufacturing employment growth with Detroit-Dearborn-Livonia metropolitan area taking the top spot.
So far, this territory has created more than 89,300 jobs, and this has reversed the overall decline in employment, which is partly attributed to the advent of CNC machining. Detroit is in second place after Silicon Valley in the concentration of engineers, and there are many skilled workers here. The implication is that manufacturing in the USA is well endowed with a knowledgeable workforce. Warren-Troy-Farmington and Grand Rapids-Wyoming are other areas within Detroit playing a significant role in the growth of the manufacturing sector.

Toledo, Ohio

Among the mid-sized cities in the U.S. Toledo is leading in industrial employment and is located 60 miles from Detroit.

Nashville-Davidson-Murfreesboro, Tennessee

The Southeastern region is another US manufacturing hotspot, as a result of several establishments by major investors from Japan and Germany among others. Within Central Tennessee, small domestic parts companies continue to thrive thanks to the presence of Bridgestone and Nissan manufacturing plants. This is where you find Nissan’s U.S. headquarters since its relocation from Southern California.

Louisville, Kentucky

The region is supporting major domestic auto makers such as Ford which employs more than 14,000 workers, making it one of the largest MSAs. The area leads the park as one with the highest number of employees in “advanced industries,” which are technically oriented parts of the factory economy and tend to pay workers better.

Savannah, Georgia, Colombia, South Carolina., and Charleston, South Carolina

In second position among mid-sized industrial hubs is Savannah, Ga., which acts as a major center for German car companies. On the other hand, expansion of aerospace suppliers and Boeing in Charleston, S.C., places the area among leaders in manufacturing in the United States. The revolution of industrialization in each of these locations did not happen until recently when the growth of workforces is being experienced.

Cape Coral-Ft Meyers, Florida, Naples-Immokalee-Marco Island, and Sebastian-Vero-Beach, Florida

Are also viewed as southern stars and out-performers in the mid-size industrial regions category.

Oklahoma City and Houston

These areas are home to the country’s oil exploration and drilling companies. What makes them top the list of MSAs is that petrochemical and refining industries in these regions have realized an enormous boon. Falling oil prices have caused organizations engaging in exploration activities to rein in their budgets, but that has not stopped Houston from ranking third, among those with the largest concentration of manufacturing jobs.

More companies are shifting to smaller cities within America, and though manufacturing jobs may not be the central force of the economy, their impact is being felt by both small and huge economies.

mechanical engineering

What are the Highest Ranked Mechanical Engineering Schools in the U.S.?

Though it’s a broad field of engineering, mechanical engineers are generally tasked with the design, construction and testing of everything from thermal sensors to engines to heavy-duty equipment and machinery. But before mechanical engineers can enter the workforce and contribute to the revitalization of U.S. manufacturing, it’s first essential for them to acquire the professional skills and knowledge required by employers. By earning a degree from one of the nation’s prestigious mechanical engineering schools or U.S. manufacturing schools, students will have the necessary know-how on essential skills like CNC manufacturing, CNC automation and CNC machining to propel them to success in the workforce. With that said, here’s a look at the highest ranking mechanical engineering schools in the U.S.

Top 5 Highest Ranking Engineering Schools in the U.S.

  1. Massachusetts Institute of Technology (MIT): Engineering education is somewhat synonymous with MIT. And when it comes to mechanical engineering, the school is the top ranked, according to a report from College Factual, which lists it No. 1 out of 270 colleges with such programs. In fact, at MIT, nearly 15 percent of all undergrads are working toward a mechanical engineering (ME) degree. But first you have to get in – and getting into MIT is highly competitive. According to U.S. News, only about 8 percent of all applicants are admitted.
  2. Georgia Institute of Technology: College Factual slots the Georgia Institute of Technology, or GIT, as No. 2 on its list of schools with the best ME programs in the country. Like MIT, about 15 percent of all undergraduate students enroll at GIT to pursue an ME degree.
  3. Stevens Institute of Technology: Located in the Hoboken, New Jersey, area, the school doesn’t just pride itself on having one of the safest campuses in the country, but with producing some of the best ME graduates in more of an intimate setting than the top two school on this list. For instance, in 2016, only about 150 students graduated with a degree in the program.
  4. California Institute of Technology: One of the neat things about those who graduate with an ME degree from the California Institute of Technology is that they typically see a 12.6 percent average earnings increase compared to other ME graduates. Oh, and you can’t beat the Pasadena, California, location of the school, making for great year-round weather. Another great thing about the California Institute of Technology is its extremely favorable 3:1 student-faculty ratio.
  5. Stanford: Stanford University rounds out our top 5 mechanical engineering schools list, as it offers both undergraduate and advanced degrees in the field of study. Stanford, an Ivy League school, also happens to be among the most prestigious colleges in the nation, coming in at No. 7 out of a possible 1,383 universities, per College Factual. It’s also the best university in the state of California.

Though we’ve detailed the top 5 mechanical engineering schools above, there are several more worth mentioning. Just think of these as our honorable mentions, a list that includes Kettering University (Flint, Michigan), the University of Michigan (Ann Arbor, Michigan), Rensselaer Polytechnic Institute (Troy, New York) and Carnegie Mellon University (Pittsburgh, Pennsylvania).

quality manufacturing

How can manufacturing employers find qualified machinists?

It is a common problem: there are jobs available for skilled workers in the manufacturing field, but there aren’t enough skilled workers to fill the jobs. When you hear reports about unemployment and jobs that are available in different fields, there is often a large discrepancy between the experience of those who are seeking employment, and the experience of employers who are seeking skilled employees.  If there are so many people who are looking for work, then it ought to be easy to find someone who can fill your vacancy, right? Unfortunately, this isn’t always the case.

In fact, in a survey of U.S manufacturing executives across a variety of different fields, including automotive, consumer goods, industrial parts, high-tech industries and electronics, it was found that finding qualified and skilled workers ranks as the number one or two issue facing manufacturing corporations today.

Why Skilled Labor Matters

The bottom line is that quality manufacturing can only happen when you have qualified workers. Unfortunately, the most difficult jobs for manufacturers to fill are the ones that are most necessary. CNC machine shops, CNC production, and CNC automation are all dependent on skilled labor. As a manufacturing employer, if you don’t know where to recruit skilled labor, then you may be faced with an issue of not being able to fully staff your manufacturing operation.

Old-fashioned methods of spreading news about a job vacancy doesn’t work anymore. You can’t rely on word of mouth or a newspaper post to bring you the candidates that you want. If you want the best people for the job, then you need to advertise the job where the best people are already looking. This means taking advantage of the internet, but more specifically than that, this means developing an online hiring strategy for your quality manufacturing facility.

Here are a few tips to help you find the right candidates for your position:

  • Advertise on employment websites. Pushing your vacancy to the top of the list via a sponsored advertisement can dramatically increase your applicant pool.
  • Be specific about the requirements. Don’t be vague when posting your job requirements. Let the applicants know what you are looking for, this way your applicant pool is full of qualified candidates who you may want to consider.
  • Utilize a social network. Over 80% of adults use social media, so it makes sense to reach out to your potential applicants where they already are. You don’t want to directly poach employees from a competitor, but by letting more people know about your vacancy you may encourage someone to apply who hadn’t thought about leaving their current job.
  • Work with local schools. By partnering with a local school, you can ensure that students are gaining the skills that you are looking for, and then you can create a candidate pool of fresh graduates who are already trained in your areas of need. Schools are often interested in working with potential employers, as it encourages students to enroll if they know there are job opportunities at the other end.

If you want skilled workers, you need to put your job advertisement out there where the skilled workers are going to see it. Finding the right candidates can reduce your training costs significantly, helping you to focus more on production and sales, which is what is going to help your business grow.

renewable energy manufacturing

What Impact Are Renewable Energy Sources Having on Manufacturing?

Manufacturers around the world are progressively increasing their utilization capacities of renewable energy to improve their competitive advantage. Industries use process heating systems to create finished products from raw materials. However, they need to efficiently use this power to reduce greenhouse gases and reduce the cost of production. It is alarming to know that the energy-intensive sector utilizes up to 75% of the world’s energy but only amount to 5% of all existing manufacturing plants. Renewable energy manufacturers such as solar, wind, biomass, tides, and geothermal offer an effective solution. However, these sources have both positive and negative impacts on the manufacturing sector.

Diversification of Manufacturing Energy Sources
Manufacturers are now employing renewable alternative sources of energy to increase production and reduce energy consumption. Most industries are now using a mix of some renewable energy sources such as geothermal, solar, and wind power. As a result, they can reduce the cost of production and facilitate innovation and competitiveness. Similarly, the climatic effects of manufacturing are reduced significantly.

Development of Efficient Manufacturing Facilities
Most plants utilizing renewable energy sources have shifted their agendas to a more sustainable energy future. This future includes energy efficient buildings that are made from resilient materials able to withstand harsh climatic conditions. These buildings come with power systems that help in optimizing energy and reduce overall loss of energy. Efficiency with renewable energy manufacturers has also allowed for CNC automation in industries. CNC manufacturing uses 3D movements to cut into any material. Once the commands are set, this automated machine significantly saves on numerous man-hours that would otherwise be utilized in performing these tasks. The time-saving aspect improves efficiency in the long run.

Less Maintenance Cost
Facilities using renewable energy pay less cost for maintenance than those using non-renewable sources such as traditional generators. These energy efficient facilities incur less operation cost since operational fuel is derived from natural sources.

Reduced Manufacturing Costs
With the seemingly unbearable rise of energy costs, most manufacturing industries have had to explore different sources of clean energy. These clean energy sources are attractive in the production value chain as they cut extra costs. High energy costs are unsustainable for businesses which have to compete with smuggled and imported goods from other countries. Again, clean energy sources increase their competitiveness in the markets.

High Initial Costs
Perhaps the main disadvantage of renewable energy is the high initial costs. For instance, setting up wind power plant is significantly costly. Some manufacturers cannot afford this exorbitant cost. For the determined ones, they have gone ahead to seek grants and investors who can aid the process of moving to a sustainable future. Nevertheless, these costs are sometimes passed to finished products hence raising their prices.

Although the initial costs for renewable energy manufacturers materials and plants are relatively high, it is economical and beneficial in the long run. Not only does it cut down unnecessary wastes and costs but also creates efficiency in the process. Renewable energy sources are therefore improving manufacturers’ ability to produce more to satisfy the market demands.

Contact Tag Team Manufacturing today. 303-841-5697.

OEM

What OEM expectations from vendors have changed in the past 5 years?

As competition increases in machining across the world, it is essential to pay a great deal of attention to OEM standards – both minimum regulations and market standards. Over the past five years, OEM expectations from vendors have changed quite dramatically. Here are just a few of the modifications that you should keep in mind when you are assessing your quality control variables.

Quality Assurance

Led by the luxury automobile industry, the proliferation of precision automation manufacturing has created a higher standard for quality in OEM parts in many industries. Deliverables are now expected to maintain an extremely high rate of integration with factory parts, and OEM manufacturers are always competing to lower the error rate in batch deliveries.

Most quality assurance errors occur in high-volume production lines; however, as automation takes over for other forms of machining and general manufacturing, you can expect the QA standard to move up for bulk orders as well. In heavily regulated industries such as medicine and the automotive industry, vendors are becoming hardline about remaining in compliance with their various industry standards. Before choosing an OEM company within these industries, it is recommended to fit that company for an understanding of regulatory policy.

Continuous Improvement

Chief among new expectations from vendors is a dedication to continuous improvement. Fully accessible big data is now the norm for even the smallest startups in all major industries. It is a simple thing to quickly survey vendors on their opinions and quantifiable problems with a delivery. OEM companies now also have the luxury of surveying vendors ahead of time to take the temperature of market conditions and new product iterations.

Savvy OEM partners are gearing up for production runs on new product iterations years in advance, sometimes concurrently with the original manufacturer. When two sets of eyes are sharply focused on the market under the banner of continuous improvement, the result is usually much better for the end client.

High Volume Production

Being able to handle high volume production while maintaining a time to market and QA standard that is competitive in an industry is a feat not to be underestimated. When volume ramps up, small problems quickly become big problems. Close interdepartmental cooperation is necessary to ensure that a product does not veer off course before production takes its course.

Design Capabilities

More than ever, OEM partners need to have fit-for-purpose design development capabilities. The tenants of precise QA and continuous improvement can be quite a shock to a traditional production system. It is not enough to locate problems more quickly; the production capabilities of a company must be robust and flexible enough to handle any changes that need to be made on the fly.

The total capabilities of an OEM company become even more prevalent during high volume seasonal orders that require a high degree of precision. Vendors are being held to a just-in-time standard more often than ever, and they must demand it of their partner companies as well.

inspection equipment

What inspection equipment is crucial in manufacturing today

Increasingly complex production processes and ever-accelerating production rates, make the human obsolete for executing the multifarious lightning-fast inspections  necessary to ensure compliance with today’s numerous quality and regulatory requirements. Inspections by human eyes and hands are manufacturing processes of the past. With manual inspection, corrupted products may pass through the entire production process without being discovered until much later. Such a management flaw can put consumers at risk and cause manufacturers enormous recall costs, brand damage, and waste costs.

Automatic inspection processes detect errors at an incomparably higher rate than people can accomplish, bolstering efficiency of production lines. Automated inspections afford reliably repeating inspections. And, they offer precision in capturing performance data, such as rejection rates. These benefits spur quality and conformance improvements that become very significant contributors to customer upgrade and repeat purchase rates, profit margin, and market competitiveness.

Inspections are conducted at so many points along production processes, and by so many interested parties, that it’s dizzying to consider just the number of kinds of tests conducted throughout  the manufacturing industry on an average day—from shop inspections, to second and third party stake-holder site inspections, to ISO and government inspections. Inspection costs alone can represent a significant expense. And, increasingly strict quality standards along with ever-accelerating production rate requirements further increase the cost.

On the other hand, cutting corners on inspection costs predictably prove to be a costly error, escalating risks of comparatively high quality control failure rates and nonconformance rates that can jeopardize a manufacturer’s competitiveness. Optimizing inspection systems doesn’t necessarily mean spending more. However, it does mean manufacturers need to get the most for their investment in manufacturing inspection equipment and processes.

From robotics, to medical equipment and supplies, to food production, inspection and testing plans for incorporating inspection equipment are now driving what has become a robustly innovative inspection equipment industry.

Kinds of inspection

A manufacturing test is performed as part of a particular inspection process for PQR, or for any one of myriad in-process purposes. Just listing, much less explaining, all the tests required for manufacturing is a project far beyond the scope of this article. But, here are listed just a small number of industrial tests, to give merely a sense of how vast the range of inspection types is across the manufacturing industry.

  • Bend, impact, and tension tests
  • Inspection (testing) equipment calibration
  • Radiographic tests
  • Weld Destructive Testing for WPQ
  • Pump, valve, compressor, and pressure vessel inspections
  • Factory Acceptance Test (FAT) of equipment under construction
  • Annealing Heat Treatment, testing temperature change rates and metal properties
  • Corrosion resistance testing
  • Magnetic Particle Inspection (MPI)
  • Dimensional inspection
  • Ultrasonic testing
  • Hot working metal properties analysis
  • Electromechanical tensile testing of non-ferrous materials
  • Surface smoothness test (AARH test)
  • Identify breaks or other physical defects on finished products
  • Product mass measurement
  • Package seal inspection
  • Code validations
  • Label affixed and positioned validation
  • Tamper seal closure tests
  • Vision inspection for product conformance and overall packaging integrity
  • Container content and fill level measurement
  • Food, beverage sorting consistency with packaging
  • Product counting

Kinds of inspection equipment

Of course, some inspection technologies can be better investments than others. The challenge is to identify those that can be expected to advance your process improvement and quality objectives, and yield the highest ROI. This is especially true in today’s dynamic environment, in which innovations are so rapidly advancing process capabilities, that state-of-the-art equipment can quickly become obsolete. We have identified a few that appear to have the broadest range of applications across manufacturing, and the greatest overall value in terms of ROI and contribution to branding goals.

1. Barcode scanner

Barcode scanners are used at throughout the supply chain, materials management, production, packaging, warehousing, and shipping, processes, and further at wholesaling and retailing points of sale. Scanners can be linked to materials management systems in order to increment materials inventory counts as products are being produced. As material inventories are depleted, stock counts are updated in real time. Scanners can even interface with database software to confirm a match between a product unit and the barcode assigned to it. Scanners can be used for barcode inspections on:

  • Individual items in bottles or cartons
  • Pallets for X-ray inspection
  • Adhesive printed label sheets for later application
  • Inventory tracking lists and paper ledger entries containing barcodes
  • Stamped or printed barcodes

2. Vision

Vision inspection system equipment automatically identifies a vast array of quality problems that human inspectors cannot detect with comparable consistently. And, these automated camera processes are increasingly fast and wider ranging in the numbers of tasks a camera can manage. The equipment is advancing to produce ever-higher resolution to capture subtle defects. This reduces rates of false rejections by the automated system. Additionally, a vision inspection system can be integrated into automated line processes to catch errors that might otherwise ruin entire lots. This benefit may be enough to account for enough loss savings to realize a favorable ROI.

3. Checkweigh

Checkweigh inspection systems consist of automated checkweigh equipment, usually stationed at the end of the production line. The checkweigher rejects underweight or overweight product units and immediately removes them from the line. The rejection triggers an alert that prompts line workers or supervisors to attend to the fill weight problem, before perhaps thousands of nonconforming products are produced. Some features and benefits of automated checkweigh equipment are:

  • Meet AQS as well as non-AQS (UTML) requirements (But be aware of retailers’ standards.)
  • Constrain tolerances to ensure increased fill process precision
  • Reduce waste to increase profit margin, which cumulatively can add up to staggering savings

4. X-ray

Bits of debris such as rubber, metal, glass, stone, and other opaque that contaminate products can be detected using X-ray technology fitted for manufacturing applications. X-ray equipment can see through a product and its packaging to assess density of contents to distinguish foreign materials from product. X-ray inspection can be used with many packaging types, including cans, jars, bottles, foil, and pouches made of a variety of materials. And X-ray machine is higher priced than metal detection equipment, but it precisely locates the contaminant and shows the line operator exactly where it is to be found inside the product. Modern X-ray equipment is optimal for high-speed manufacturing lines and for producers who need to minimize contaminates to guard against recalls. Today’s sophisticated X-ray equipment for manufacturing quality control can be stationed in-line to:

  • Detect contaminants
  • Identify physical defects
  • Detect broken products
  • Detect missing products
  • Validate integrity of package seals
  • Measure products’ mass

5. Metal detection

Currently, a major issue in food production is contamination by stainless steel and other metals. Modern metal detection equipment for manufacturing can detect metal contaminants in products with high fluid volume. This product inspection equipment is good for use in production systems with need to inspect only for metal contaminants in products. Metal detection equipment is usually stationed at or near the end of the production line to inspect the final product. They are not useful for products in tin cans, or in foil or aluminum packaging, or metallic film. Metal detection machinery works well for inspection of:

  • dry goods like sugar, flour, salt, and others
  • frozen food products
  • numerous other products

For your QM team to ensure quality in daily operations by confirming that processes are optimally efficient in conforming to Operating Procedures, manufacturing inspection equipment affords ideally controlled repeatable inspections. Updating your Quality Management Program technology with automated inspection equipment can take your program a great distance toward:

  • ensuring customer satisfaction
  • overall efficiency of QC systems
  • reduce operating cost
  • minimize material waste
  • reduce instances of product non-conformance
  • reduce risk to customers
  • reduce risk of recalls
  • improve regulatory conformance
  • accomplish PI objectives

If your plant is still using outmoded manual inspection processes, it is probably time to discuss with your SME in manufacturing machinery, possibilities for implementing quality and conformance inspection and identification technologies. You may discover that it is more affordable to procure the equipment and implement its use than it is not to do so.

American manufacturing

Why Manufacture Your Products in the USA vs. Overseas?

You’ve got products to be made. But where? Should American manufacturing be done overseas, from inexpensive factory sources? Or in the United States, where your costs might be higher and your profit margins squeezed? This is usually how the choice is presented.

In fact, both time and money factors very often point to American manufacturing having the edge in efficiency.

Maintaining Local Accessibility

Doing business with a U.S. manufacturer means your product can be available quickly, by domestic shipping. You’ll be able to keep in constant contact with the manufacturing company.

You’ll have the option of working with its specialists from start to finish with considerable ease.

For example, you can have quick access to manufacturers’ samples of a product line ahead of a full order.

Indicators for Future U.S. Manufacturing Growth

There might be other factors in a decision to go with a U.S. manufacturer. Much more than a wage-per-hour figure is in play.

Supporting American manufacturing gives you the power to support the future growth of the sector, and its solid role in a strong economy. It is an investment in the future of U.S. workers and job security overall.

Under the Trans-Pacific Partnership, the North American Free Trade Agreement, and other international trade agreements, the United States has suffered a job drain, and the movement of factory trade to foreign locations. At some point, truth be told, US policy changed. It gave up on promoting economic growth from within. It began to rely, and has increasingly relied, on overseas manufacturing.

The public mood may be swaying the Trump Administration to revamp key aspects of international trade. We are optimistic. In our view, there has never been a better time to invest in the future of US manufacturing. Instead of offshoring, the emphasis will be on reshoring.

To that end, President Trump has expressed a commitment to have the US Commerce Department identify trade agreement infractions, by any country, that have harmed US workers. Accordingly, all relevant agencies should use every US and international legal means to end the abuses.

Investing in Communities and Work Environments

Now, let’s return to what we as ordinary people can do to support US industry’s future growth. This involves putting our money where our mouths are—that is, actually relying on American manufacturing for the production of goods. This brings funds into the businesses that can hire local personnel and invest in communities.

Should you commit to working with US-based manufacturing, let your clients know in turn. Be sure they’re aware that part of the cost they’re paying is an investment in the sector.

Tag Team Manufacturing is a US-based company fully dedicated to the economic success of our Denver community. We believe in providing a work environment where machinists are rewarded and retained. We trust our staff to suggest and implement improvements and supply the highest quality parts for our customers.

Call Tag Team Manufacturing today to plan your next manufacturing project: 303.841.5697.

raw material

What factors impact the cost of raw material pricing?

Raw material, whether wood, minerals, crude oil or even meat, all often have varying price points rising and dropping like the stock exchange. There are many variables at play causing this to happen. Each variable affects the price point of raw materials, causing it to increase or decrease for manufacturers, distributors and consumers. Here are several contributing factors to the shifting price of such materials.

Sourcing the Material

One of the most expensive aspects of obtaining and distributing raw materials is sourcing it. If a mine runs low on the source material, if a harsh winter kills crops or if a forest fire takes down acres of lumber, readily available material is reduced, which in turn causes the price of raw material to go up. The demand remains, but as the supply is reduced, prices increase.

Transportation

The transportation of goods is another major expense to moving raw materials to different regions both within a country and around the world. This is especially true when importing or exporting the goods. As new levies and taxes are placed on goods brought in from other countries, the price for the raw material goes up. Additionally, if transporting lumber by truck or train, an increase in the cost of fuel will increase the cost to transport the goods, which causes the cost of raw material to shift.

Labor

Between transportation, sourcing the material, carrying for the material before it is ready to harvest or any other labor position along the way, if there is a shift in the work force there can be a shift in raw material pricing. If a union goes on strike, it affects raw material pricing as less of it can be transported or sourced from the earth. Other times, if the labor union reaches a deal and this includes an increase in pay, benefits or other aspects of their work, it in turn increases the price of raw material. Just about any shift in labor will have an impact on the cost of raw material.

Acts of God

Most other aspects involved in the shifting cost of raw material can, to some extent, be forecast. Acts of God typically cannot. This is a sudden and often devastating event that affects not just part of raw material sourcing and distribution, but an entire region, city or nation. The exact definition for an act of God may shift, depending on insurance purposes. But, typically, tornadoes, flooding, hurricanes, earthquakes, violent winds, volcanic eruption, tidal wave or near any other natural phenomenon that happens with little warning can shut down production and transportation instantly and for an extended period of time.

Forecasting the shift of raw material pricing is not an exact science. Like identifying a potential chance in a stock’s value, different variables are always at play. By understanding what factors impact the cost of raw material pricing, a manufacturer or user of the material can determine the best point of time in which to buy added material or when to hold off before buying additional supplies.