Tag : cnc tooling

precision machine shop

How to Choose the Right Tools for the Job: Examples of CNC Machine Tasks

Just because the world of manufacturing has changed doesn’t mean that people need to stray from the basics. It is just as important to choose the right tools for the job today as it was hundreds of years ago. In actuality, as technology has advanced, there are more tools at someone’s disposal than ever before. With more choices, it has become harder to select the right tools. Now, there are CNC manufacturing tools available in almost every precision machine shop, leaving people to select which types of tools are most applicable to this advanced technology. What are some of the examples of tools that a CNC machinist might require? How can the right tools be identified?

Starting with Computer-Animated Drawing (CAD) Model Design

The first step in the CNC machining process is the creation of a 2D or 3D model of what is going to be produced. Typically, this is done through computer-animated drawing, or CAD. This is computer programming that plays an essential role in the CNC process. CAD allows manufacturers to put together a picture with the necessary specifications (including dimensions and various geometries) that will allow the product to be completed.

The designs of CNC machined parts are typically restricted by the geometry of the machine process itself. CAD helps manufacturers identify potential problems and limitations of the end product before the process gets underway. In this fashion, CAD saves both time and money in any precision machine shop. By identifying and fixing problems before the first machine is moved, a tremendous amount of stress is saved.

Once the CAD drawing is complete, the file needs to be exported and converted into a format that is compatible with CNC machining. Common formats include STEP and IGES. It is important for manufacturers to take a look at the various software programs that are available for CAD. The more familiar people are with CAD, the more efficient the CNC machining process will be.

Building the CNC Machine: Examples of Possible Tasks

Now that the CAD drawing is complete, the next step is to build the CNC machine. Depending on the actions that must be done to build the final product, this machine can take many forms. Some of the tools that the manufacturer will need to find include machinery spindles, machine vises, drill bits, end mills, lathes and more. These tools then need to be attached correctly for the various steps to be performed. It is important for everyone to identify the various steps that must be completed and build their machine accordingly. Some of the types of CNC operations that might be performed using custom machined parts include:

CNC Drilling: Drilling is a machine process that relies on the use of drill bits with multiple points that will produce holes in the desires workpiece. Using CNC drilling, the machine will feed the rotating drill bit into the perpendicular plane of the workpiece. This produces holes that are aligned in a vertical manner with diameters that match the width of the drill bit. Using advanced CNC machinery, holes can also be drilled at an angular manner. Drill bits can also be used to perform tasks such as reaming, countersinking, and counterboring. If these tasks are required, advanced drill bits might be needed. Manufacturers in a precision machine shop should plan accordingly.

CNC Milling: Another possible CNC task is called milling. In milling, a rotating multipoint cutting tool is used to remove certain amounts of material from the workpiece. The CNC machine will typically feed the workpiece into the cutting tool in the same direction as the tool’s rotation. This produces a smooth surface while simultaneously removing material from the surface of the workpiece. Depending on the program, CNC milling can either be used to cut shallow, flat surfaces with flat-bottomed cavities (called face milling) or to produce deep cavities such as slots and threads (called peripheral milling). Depending on the type of milling that people need to perform, they might prefer one type of equipment over the other.

CNC Turning: CNC turning is another possible task that can be performed by advanced CNC machinery. In CNC turning, the machine (such as a lathe) will feed the cutting tool into the workpiece in a linear fashion. Then, using a single point, the machine will remove material from the circumference of the workpiece. This will be continued until the desired diameter is achieved. Therefore, CNC turning can be used to create cylindrical parts. Advanced CNC turning can also be used to apply advanced internal features to the workpiece. This includes threads, tapers, and slots. If advanced features are needed, the manufacturer may want to investigate advanced CNC turning tools that are capable of doing this.

As a summary, CNC drilling is used to produce cylindrical holes of varying sizes. CNC milling removes material from the workpiece and produces a wider variety of shapes. CNC turning is used to create round or cylindrical parts. All of these require different manufacturing tools that interact with CNC machines in a different way.

A Revolution in US Manufacturing with Prototype Machining from CNC Manufacturing

While these are a few of the most common tasks that can be carried out using CNC tools, there are numerous other examples as well. These include lapping, honing, grinding, broaching, and sawing. These are advanced tasks that can be combined with those above to create additional features in the final product. With the advent of advanced CNC programming, machines in any precision machine shop can be set up to perform multiple tasks at the same time using custom machined parts. This has changed what people expect of their original equipment manufacturer (OEM) because this technology can increase both productivity and accuracy. It is crucial for manufacturers to embrace CNC manufacturing and invest in the proper equipment to ensure these expectations are met.

Choosing the Right Tools: Help from the Experienced Professionals

As the world of Denver manufacturing continues to change, it will only become more important to choose the right tools. The expectations of the consumer are going to change and precision machine shop businesses need to rise to meet them. This means putting CNC manufacturing to work in the right way with the right equipment and the right team. Because of this, anyone who is working in a custom machine shop Denver needs to make sure that they have access to every tool. This is where it is crucial to have a high-quality CNC Machinist available. To learn more about CNC manufacturing and how it can change your Denver manufacturing company, contact Tag Team Manufacturing today. Someone is always available to provide assistance.

cnc machining

How does different material impact CNC tooling?

CNC machining offers significant flexibility for the manufacturing industry. However, depending on your manufacturing needs, you need to consider what materials to work with to achieve efficiency and cost-savings. While various machine shops offer guides on material selection, you should be aware of the properties of various materials and their impact on CNC tooling.

With the right approach to material selection, CNC machining translates into an efficient manufacturing process with high-speed production rate and high precision for critical applications in areas such as the aerospace, photonics, environmental monitoring, computer storage, bike, oil and gas, drone, electro-mechanical, and robotics industry.

Understanding the impact of specific materials on CNC tooling improves your productivity since you’ll be able to match the materials with the right tooling style. For instance, wood, plastics, and composite machine are workable with most CNC machining styles, which are equipped with the HSK style tool holders or, ISO/SK/BT style.

However, specialized applications cannot be executed with standard CNC machining styles. Thus, you’ll need specialty tool holders such as the heat shrink and hydro tool holders. While CNC machining has a unique capability for cutting and forming various types of metals and polymer materials, it is impossible to reap maximum benefits from it without proper selection of materials.

Here is what you need to know about the impact of various materials in CNC tooling:

Hard materials

In most cases, machining hard materials, is hard work and demand a combination of high precision and rigid tooling system. Tooling hard materials requires more processing in contrast to normal materials. You need to apply the right strategy and tools at every stage of the manufacturing process. In fact, you have to master it to realize the desired output.

Tool Choices

CNC machinists have the choice of distinct tools; the square end mills, bull nose and ball-end. In some cases, hard materials require you to combine for different stages in the manufacturing process.

For roughing operations, hard materials require the use of the ball end mill. It also the ideal tool for finishing operations. The ball end mill is characterized by a large radius, which helps dissipate heat and force. As a result, it enables you to work at high speeds and to feed the material quickly for you to cut closer to the net shape.

As for large parts with flat floors, you need a bullnose tool. In contrast to the ball end mill, it has a small radius and limited capacity for dissipating heat and force. Thus, it is not ideal for parts that require sharp corners, especially where the floor and the wall meet since it results in chipping.

For such cases, it is best to use a square end mill. Alternatively, you can employ dry machining with air or oil to reduce the chipping since it provides higher spindle speeds.

Tool Geometry

Since hard materials cause rapid wear of tools, a custom machine shop in Denver may demote them to semi-finishing tools or re-sharpen them.

However, since CNC is meant for high-precision manufacturing, the need to cut varying angles and edges using a blunt tool will lead to losses since it has lost its tool geometry.

Tool geometry is critical to precision manufacturing, and a deformed tool should be replaced since it conflicts with the programming specifications for proper operations. CNC manufacturing relies on programming templates for quality control. For instance, CNC programming with a gibs feature is best addressed with a gibs template for the easy selection of tools and tool paths for your manufacturing project.

Such templates are applicable for speeds and feeds on various features and allow you to pick a specific feature and the tool to work with, which comes with predefined speeds and feeds.

The templating process is used for the standardized features of a mold, for example, base plates, gibs, and retainer plates. It is quite helpful when handling hard materials since the process positively impacts time value and tool wear.  With the knowledge of proven patterns and tools when working hard materials is invaluable since it helps you apply templates for fast and efficient cutting process, and, at a cost-effective price.

Since hard materials are dense, they’re full of tension and require soft machining to release the tension. Thus, you must begin by roughing the materials in their annealed state. The soft machining process informs the choice of the type of CNC tooling to apply since you need to optimal material removal.

To make the machining easier, roughing is followed by heat treatment. Since hard materials break into chips when heat-treated, you need inserted cutters to make the chips move fast. Also, they require tool path patterns that can support the fast movement of chips to hasten the process. As an original equipment manufacturer, it is critical to leverage toolpath concepts such as adaptive clearing for the heat treatment process.

With knowledge of how different materials react to heat treatment allows you to select the right tool for the job so you can monitor the twisting of the mold to the required shape.

As such, you need to balance the stock to create enough room to adjust the mold during the finishing process. Also, you should have the right amount of stock to avoid excesses, which would lead to hard machining to remove it.

Since the finishing process comes after the heat-treating process, you need a hard machining plan. Heat-treated materials are harder and create a stronger surface, but brittle, thus challenging to machine.  As a result, you need an assortment of specific tool sizes to achieve the desired stopovers for surface finish.

Part Geometry

In addition, you need to apply specific techniques such as raster passes to make the cutter intersect with the vertical planes made during the roughing process. Denver manufacturing services by Tag Team reference part geometry for the proper configuration of the machining tool to achieve precise surface finishes of high quality.

CNC tooling is flexible, but it is informed by choice of materials you use. While the focus here has been on hard materials, all types of materials have an impact on CNC machining since you have to consider part geometry and the desired designs.

For instance, in the design of complex and detailed parts, a mistake in the choice of CNC tooling could lead to the design of unnecessarily expensive parts in the design phase.

Design

For CNC machining to work properly, the programming of the tools has to map the desired design on the mold. Thus, it is critical to get the right drawings and feed the right tool to produce the right design. However, this should not be a challenge since you can leverage the expertise of Tag Team, a CNC machinist, and precision manufacturing company in Denver. Besides, they specialize in the manufacture of precision components for OEM’s in every industry.

At Tag Team, we have the skills and capacity to work with original equipment manufacturers in developing prototypes. With the capacity to generate over 50,000 components yearly, we can help you with your CNC manufacturing projects.